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Abstract. The sustainability of a pension system must be “logical” in type and
not based on the forecasts optimism. This paper proposes a logical mathematical
model to manage a pension system. An organic funded component of structural
type is introduced. A very general differential-type condition is obtained under
the assumption that the pension benefits are calculated according to the defined
contribution scheme. A sufficient condition of easier application is also deduced.
In the latter condition a control indicator is used which constitutes the natural
change to the sustainability indicator, or Balance Ratio, of the Swedish pension
system to make it logically based. This indicator can be decomposed into two
components, one that manages the pay-as-you-go part of the pension system
and the other that manages the funded part. The paper is developed in a non-
steady-state situation, which has been quite neglected in the literature.

Keywords: pension system, pay-as-you-go system, funded system, social secu-
rity.

1 Introduction
Pension system sustainability is an issue that is currently arousing great interest
both at an operational level and a theoretical one.

Particularly for pure pay-as-you-go pension systems, financial sustainabil-
ity in the middle and long term is based on the balanced ratio between the
population of the pensioners and that of the contributors. Pure pay-as-you-go
management works if the pension system can assure to the subscribers that fu-
ture pension benefits are certain in a context of adequacy and fairness among
the different generations. This occurs if the retirees to contributors ratio is suf-
ficiently low and stable in time. On the contrary, as it has really happened over
the last decades in different Western countries, if a demographic hole, and hence
a contribution hole, is created to the shoulders of a generation, then the ratio
between retirees and contributors is destined to grow significantly. Hence main-
taining system management in the pure pay-as-you-go form does not guarantee
in itself the adequacy of pension benefits in the perspective of inter-generational
fairness.

This pension system analysis cannot therefore neglect considering the de-
mographic structure of the underlying collectivity. Up to now the literature
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has paid great attention to the influence of economic and financial variables on
pension systems, but has for the most part neglected demographic variables.
Whenever the demographic issue has been considered, the underlying hypothe-
sis was a steady state of population distribution by age, without considering the
meaningful influences that fertility and mortality changes can have (Lee, 1994).

For pure pay-as-you-go pension systems the aim is to ensure the “logical
certainty” for future benefits to pension system participants, in a perspective of
adequacy and substantial fairness among generations.

In the author’s opinion, the “logical certainty” derives precisely from the
definition of logically sustainable pension system. A pension system is logically
sustainable if it is characterized by the following three phases. The first can
be called a “rules phase”: this fixes the rules for contribution and for pension
benefits calculation. The second or “control” phase sets well-founded logical and
mathematical rules and indicators for controlling the financial sustainability of
a pension system. The third or “rebalancing phase” establishes the modalities
and the variables to be intervened on if the pension system has to be brought
back to the sustainability levels provided for in the second phase.

In the perspective of logically sustainable pension schemes, in particular for
pension systems that are not demographically stable in time, it is natural to
introduce a structural type funded component (Angrisani, 2006).

This paper is structured in the following way. Section 2 proposes a logical
mathematical model of a pension system founded on a mixed type financial
management (“partial capitalization management”), which provides a structural
funded component. This model can ensure the “logical certainty” of benefits
since it uses a control indicator, namely the Logical Sustainability Indicator
(LSI). The LSI is founded in logical mathematical sense for it is obtained using
differential relationships, thereby ensuring pension system sustainability. The
LSI can be reduced to two components, one which manages the pay-as-you-
go part and the other which manages the funded part of the pension system.
Furthermore, in Section 3, we show that the LSI is similar to the Balance Ratio,
which is the real indicator used in the Swedish pension system as “a measure of
the financial position of the system” (SSIA, 2007).

The Swedish indicator is based on Turnover Duration, which is “...equal
to the time difference between the average age of retirees ... and the average
age of contributors ... Both ages are money-weighted...” (Settergren, 2005,
p. 121). This definition is obtained by means of an equation that “...informs
the conceivably intuitively reasonable fact that in steady state, the liability
divided by contributions is equal to the time difference between the average
age of retirees ... and the average age of contributors...” (Settergren, 2005,
p. 121). Unlike the Balance Ratio, the LSI proposed in this paper has a “logical-
mathematical effectiveness”. Section 4 subsequently provides conditions useful
to pension system “stabilization”.
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2 Model description
The pension system is a defined contribution system. In order to simplify the
exposition but without loss of generality, disability pension and survivor benefits
are not included in the pension calculation. The pension is calculated dividing
the total pension credit by an annuity divisor at the time of retirement. Divisors
take into account a pre-paid interest rate or technical rate, which is equal to zero,
and then coincide with the remaining life expectancy, since survivor pensions
are not paid out. The pension is revalued annually by the rate returned to the
whole system pension debt, rate net of the implicit demographic rate.

A deterministic framework is considered. All the following functions intro-
duced are defined, on a yearly basis, at time t, for each t belonging to the time
interval [t∗,+∞), with t∗ as the initial time. It is, therefore, supposed that
these are continuous and, when necessary, differentiable in the time interval
[t∗,+∞).

For each t belonging to the time interval [t∗,+∞), the following functions
are defined.

F (t) is the pension system fund, that is the aggregate value of assets.
r(t) is the instantaneous rate (i.e. intensity) of return on assets.
C(t) is the instantaneous flow of pension contributions.
P (t) is the instantaneous flow of pension disbursements.

Furthermore, let LT (t) denote the total pension liability. It comprises the
pension liability both to contributors and to retirees, that is

LT (t) = LA(t) + LP (t),

where LA(t) is the pension liability to contributors at the time t, defined as the
latent pension liability, and LP (t) is the pension liability to retirees at time t,
defined as the current pension liability.

The current pension liability, which to simplify the notation we have indi-
cated by LP (t), depends also on the life-table survival function, l(t), available
at time t, that is LP (t) = LP (t, l(t)). This dependence on l(t) will be highlight
only if it is necessary.

Always referring to the time t,
ALP (t) indicates the instantaneous flow of pension liability which turns

from latent into current;
rA
L (t) indicates the instantaneous rate of return on pension liability to

contributors; and
rP
L (t) indicates the instantaneous rate of return on pension liability to

retirees.

In the following let us assume that rA
L (t) = rP

L (t) = rL(t), where rL(t)
is the instantaneous rate of return on total pension liability (both current and
latent).

In this scheme, we restrict ourselves to considering the downward effects of
mortality only for the current component of pension liability. These effects are
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therefore implicitly included in rP
L (t), because in a defined contribution pension

scheme the effects of a progressive extension of life expectancy have influence
only on retirees pension liability.

Definition 1 Let l(t) be the life-table survival function calculated at time t.
Function rID

L (t) is the instantaneous rate of implicit demographic return (ID
rate) and is defined by

rID
L (t) = lim

∆t→0−

LP (t, l(t + ∆t))− LP (t, l(t))
∆t

· 1
LP (t, l(t))

. (1)

The ID rate depends, not only on biological parameters, but also on the
demographic structure of the retiree group. In the logic of the considered scheme
of defined contribution type, the instantaneous rate of the implicit demographic
return rID

L (t) is included in the instantaneous rate of return on pension liability
to retirees, rP

L (t), which we have assumed as being equal to rL(t). Then the
rate of return, which has to explicitly credit to current pension liability by
the pension system, will be equal to rP

L (t)− rID
L (t), so that the total rate really

returned to the pension liability to retirees is equal to rP
L (t).

Let us consider the evolution in asset dynamics that arises from interest rate
at time t, from contributions (which we consider as being already free of pension
system management costs) and from pension payments. The assets evolution
equation is

Ḟ (t) = F (t)r(t) + C(t)− P (t). (2)

Let us write the pension liability evolution equations respectively for contribu-
tors and retirees as:

L̇A(t) = LA(t)rL(t) + C(t)− ALP (t)

L̇P (t) = LP (t)rL(t) + ALP (t)− P (t).

As regards total pension liability, we have the following evolution equation

L̇T (t) = LT (t)rL(t) + C(t)− P (t). (3)

The latter formula (3) indicates the evolution of total pension system liability
for a defined contribution pension scheme based on an actuarial equilibrium
between contributions and pensions.

It must be pointed out that, in our assumptions, the whole contribution
amount turns into pension liability, that is into pension benefits for subscribers,
also including, for example, the contributions of those who have died in the
course of their working years.

Definition 2 The divisor of total pension liability in the current pension lia-
bility the quotient of total pension liability and current pension liability at time
t is indicated by ν(t), i.e.

ν(t) =
LT (t)
LP (t)

, with ν(t) ≥ 1.
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Hence LP (t) =
LT (t)
ν(t)

. It follows that
1

ν(t)
is the transformation coefficient

of the total pension liability in the current pension liability.

Definition 3 The divisor of current pension liability in pension disbursements
at time t is indicated by γ(t), i.e.

γ(t) =
LP (t)
P (t)

.

It is easily verified that γ(t) is equal to the weighted mean of residual life
expectancies for retirees at time t. In this mean the relative weight of each
pensioner equals that of his pension in relation to the total weight of current
pensions.

Definition 4 The divisor of total pension liability in pension disbursements is
given by γ(t)ν(t). It satisfies the following

P (t) =
LT (t)

γ(t)ν(t)
. (4)

This product transforms the total pension liability in a pension disbursement
flow.

Furthermore, for each time t belonging to [t∗,+∞), the following real valued
functions are defined, where

W (t) is the instantaneous flow of wages and can assume only positive
values and

α(t) is the contribution rate, with α(t) ≥ 0.

As it results that C(t) = α(t)W (t), and using formula (4), the total pension
liability dynamics can be also expressed as

L̇T (t) = LT (t)rL(t) + α(t)W (t)− LT (t)
γ(t)ν(t)

= LT (t)
(

rL(t)− 1
γ(t)ν(t)

)
+ α(t)W (t). (5)

Definition 5 The unfunded pension liability is indicated by LUN(t) and is
given by

LUN(t) = LT (t)− F (t) (6)

with, in general, F (t) ≤ LT (t).

It is easy to verify that the expression of LUN(t) time derivative can be
obtained by means of formulae (2) and (3), and is given by

L̇UN(t) = LT (t)rL(t)− F (t)r(t). (7)
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Definition 6 The level of unfunded pension liability in relation to wages is
indicated by β(t) and is given by

β(t) =
LUN(t)
W (t)

. (8)

Definition 7 The level of unfunded contribution rate is indicated by αUN(t)
and is given by

αUN(t) =
β(t)

γ(t)ν(t)
. (9)

This is the level of contribution rate necessary for “covering” the unfunded
pension disbursements.

Definition 8 The difference between the real contribution rate and the level
of unfunded contribution rate is defined as the level of funded contribution rate
and is given by

αF (t) = α(t)− αUN(t) = α(t)− β(t)
γ(t)ν(t)

. (10)

The level of funded contribution rate can also assume negative values.
By means of the formula (10), the real contribution rate can be split into two
parts, the level of unfunded contribution rate and the level of funded contribu-
tion rate, that is

α(t) = αUN(t) + αF (t).

The following theorem will also use the following definition:

Definition 9 The intrinsic instantaneous rate of return is indicated by intr (t)
and is defined as

intr (t) = r(t)− 1
γ(t)ν(t)

. (11)

Theorem 1 (The necessary and sufficient condition for pension sys-
tem sustainability) Let a pension system have an initial fund F (t∗) greater
than or equal to 0, i.e. F (t∗) = F ∗ ≥ 0.

The pension system is sustainable in the time interval [t∗, tf ]1, if and only
if for each time t ∈ [t∗, tf ] the whole of the funded contribution, paid until the
time t and discounted at time t∗ by the intrinsic instantaneous rate of return,
intr (t), does not create a deficit greater than the initial available fund F (t∗),
i.e.

for each time t ∈ [t∗, tf ] F (t) ≥ 0

if and only if

for each time t ∈ [t∗, tf ] it results

1Note that the instant time tf can also be equal to +∞.
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−
∫ t

t∗
e
−

∫ τ

t∗

(
r(s)− 1

γ(s)ν(s)

)
ds

W (τ) αF (τ) dτ ≤ F (t∗). (12)

Proof. Let us reformulate (2) expressing contributions by means of the wage
and contribution rate, namely C(t) = α(t)W (t), and pensions by means of the
formula (4)

Ḟ (t) = F (t)r(t) + C(t)− P (t) = F (t)r(t) +
[
α(t)W (t)− (γ(t)ν(t))−1LT (t)

]
.

Adding and subtracting the same quantity (γ(t)ν(t))−1F (t) at the second mem-
ber, we obtain

Ḟ (t) = F (t)r(t) +
[
α(t)W (t)− (γ(t)ν(t))−1(LT (t)− F (t))

]
− (γ(t)ν(t))−1F (t)

= F (t)r(t) +
[
α(t)W (t)− (γ(t)ν(t))−1LUN(t)

]
− (γ(t)ν(t))−1F (t).

In the latter, by means of (8), we obtain the following evolution equation of
assets F (t):

Ḟ (t) = F (t)[r(t)− (γ(t)ν(t))−1] + W (t)
(

α(t)− β(t)
γ(t)ν(t)

)
, (13)

where r(t)− (γ(t)ν(t))−1 is the intrinsic instantaneous rate of return, indicated

by intr (t) in (11), and α(t) − β(t)
γ(t)ν(t)

is the level of funded contribution rate

defined in (10). It should be noted that β(t) is the level of unfunded pension
liability in relation to wages expressed by (8).

Taking into account the initial condition F (t∗) = F ∗ ≥ 0, the evolution equa-
tion of assets F (t), expressed by (13), involves the following explicit relationship
between the assets F (t) and the level of funded contribution rate, provided by

(10), αF (t) = α(t)− β(t)
γ(t)ν(t)

:

F (t) = e

∫ t

t∗

(
r(s)− 1

γ(s)ν(s)

)
ds(

F (t∗)

+
∫ t

t∗
e
−

∫ τ

t∗

(
r(s)− 1

γ(s)ν(s)

)
ds

W (τ)
(

α(τ)− β(τ)
γ(τ)ν(τ)

)
dτ

)
.2

(14)

The latter formula (14) underlines well the “additive effect” of the level of
funded contribution rate, αF (t), on the evolution of the assets F (t). In fact, if

2In (14) we can consider that the β(t) values are directly and independently determined
by the evolution equations of F (t) and LT (t), respectively equations (2) and (3).
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αF (t) = 0, that is α(t) =
β(t)

γ(t)ν(t)
= αUN(t), then the “additive effect” is equal

to zero.
By means of (14) we have that for each time t ∈ [t∗, tf ] F (t) ≥ 0 if and only

if for each time t ∈ [t∗, tf ]F (t∗) +
∫ t

t∗
e
−

∫ τ

t∗

(
r(s)− 1

γ(s)ν(s)

)
ds

W (τ)
(

α(τ)− β(τ)
γ(τ)ν(τ)

)
dτ

 ≥ 0,

and therefore if and only if (12) holds. �

3 Relationship with the Balance Ratio of the
Swedish pension system

Proposition 1 (Sufficient condition for pension system sustainabil-
ity) Assuming that F (t∗) ≥ 0, sufficient condition for pension system sustain-
ability in a given time interval [t∗, tf ] is that for each time t ∈ [t∗, tf ] the con-
tribution rate α(t) is greater than or equal to the level of unfunded contribution
rate, i.e.

If

for each time t ∈ [t∗, tf ] α(t) ≥ αUN(t) =
β(t)

γ(t)ν(t)
(15)

then
for each time t ∈ [t∗, tf ] F (t) ≥ 0.

Proof. This derives directly from the previous Theorem 1. In fact, if (15) is true,
then the condition (12) of Theorem 1 is satisfied, and so the pension system is
sustainable. �

The sustainability condition, used in (15), allows us to define a sustainability
indicator which proves to be similar to the sustainability indicator, called the
Balance Ratio, used in the Swedish pension system. Unlike the latter, the
sustainability indicator, which will be obtained through (15), is based on the
sufficient condition of Proposition 1.

Let us then consider the condition (15). By means of formulae (8) and (6),
this is equivalent to

α(t) ≥ 1
γ(t)ν(t)

LT (t)− F (t)
W (t)

for each time t ∈ [t∗, tf ],

which can be expressed as

α(t)W (t)γ(t)ν(t) + F (t)
LT (t)

≥ 1 for each time t ∈ [t∗, tf ]
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with LT (t) > 0. Then, if F (t∗) ≥ 0, the sufficient condition for pension system
sustainability in the time interval [t∗, tf ] is equivalent to

C(t)γ(t)ν(t) + F (t)
LT (t)

≥ 1 for each time t ∈ [t∗, tf ]. (16)

The following should be considered.

Definition 10 The Logical Sustainability Indicator of a pension system is in-
dicated by LSI (t) and is given by

LSI (t) =
C(t)γ(t)ν(t) + F (t)

LT (t)
.

As mentioned above, condition (16) is equivalent to condition (15). Therefore
the sufficient condition for pension system sustainability in the time interval
[t∗, tf ], assuming that F (t∗) ≥ 0, is that

LSI (t) ≥ 1 for each time t ∈ [t∗, tf ]. (17)

It should be noted that the LSI has an analytical form similar to that of
the Balance Ratio indicator, which is used in the Swedish pension system as “a
measure of the financial position of the system” (SSIA, 2007). The divisor of
total pension liability in pension disbursements, γ(t)ν(t), can be considered the
logical substitute of the Turnover Duration used in the Balance Ratio definition.
Unlike the Turnover Duration, the divisor of total pension liability in pension
disbursements is always defined and does not require the steady state hypothesis.
Differently from the Balance Ratio, the LSI is logically based because it is
founded on the sufficient condition of Proposition 1.

In the following we use the additional definitions.

Definition 11 The degree of PAYG covering of the pension disbursements is
indicated by DPAYG

c (t) and is given by

DPAYG
c (t) =

C(t)
P (t)

. (18)

This indicates the pension disbursements level “covered” by the contribu-
tions.

Definition 12 The degree of funding of pension liability is indicated by Dc(t)
and is given by

Dc(t) =
F (t)
LT (t)

. (19)

This indicates the pension liability level “covered” by the assets.
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The sustainability condition (16) can also be expressed as

α(t)W (t)
LT (t)

γ(t)ν(t)

+
F (t)
LT (t)

≥ 1 for each time t ∈ [t∗, tf ],

and, taking into account (4), it follows that

C(t)
P (t)

+
F (t)
LT (t)

≥ 1 for each time t ∈ [t∗, tf ].

Therefore, by means of formulae (18) and (19), the sustainability condition in
the time interval [t∗, tf ], assuming that F (t∗) ≥ 0, can be written as

DPAYG
c (t) + Dc(t) ≥ 1 for each time t ∈ [t∗, tf ].

The latter relationship provides the LSI indicator meaning. The two methods
which are useful for managing a pension system, namely the PAYG and the
funded methods, must work together to ensure sustainability. If the two types
of pension system management produce an aggregate effect greater than 1, then
the pension system is logically sustainable.

4 Further relationships
Further relationships useful for studying the sustainability of a defined contri-
bution pension system can be proved.

Proposition 2 Let us assume that 0 ≤ F (t∗) < LT (t∗).

For each time t ∈ [t∗, tf ] β̇(t) = 0, and hence β(t) = β(t∗),

if and only if

for each time t ∈ [t∗, tf ] rL(t) = r(t)
F (t)
LT (t)

+
Ẇ (t)
W (t)

LT (t)− F (t)
LT (t)

. (20)

Proof. For each time t ∈ [t∗, tf ], calculating the time derivative of the level of
unfunded pension liability in relation to wages, β(t) defined by formula (8), it
follows that

β̇(t) =
L̇UN(t)W (t)− LUN(t)Ẇ (t)

W 2(t)
.

By substituting in the previous formula the expressions of LUN(t) and of its
time derivative, respectively (6) and (7), we obtain

β̇(t) =
(LT (t)rL(t)− F (t)r(t))W (t)− (LT (t)− F (t))Ẇ (t)

W 2(t)
.

Then
β̇(t) = 0
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if and only if

rL(t) = r(t)
F (t)
LT (t)

+
Ẇ (t)
W (t)

LT (t)− F (t)
LT (t)

. �

Remark 1 Using the definition expressed by (19), in condition (20) rL(t) can
be expressed also as

rL(t) = r(t)Dc(t) +
Ẇ (t)
W (t)

(1−Dc(t)).

Remark 2 We observe that in general

β̇(t)
β(t)

=
L̇UN(t)
LUN(t)

− Ẇ (t)
W (t)

(21)

and then the following holds too

for each time t ∈ [t∗, tf ] β̇(t) = 0

if and only if

for each time t ∈ [t∗, tf ]
L̇UN(t)
LUN(t)

=
Ẇ (t)
W (t)

.

Proposition 3 Let us assume that 0 < F (t∗) < LT (t∗).

For each time t ∈ [t∗, tf ], Ḋc(t) = 0, and hence Dc(t) = Dc(t∗),

if and only if

for each time t ∈ [t∗, tf ] α(t) =
LT (t)
W (t)

[
1

γ(t)ν(t)
− F (t)(r(t)− rL(t))

β(t)W (t)

]
.

(22)

Proof. Let t be an instant of time belonging to the time interval [t∗, tf ]. Let us
calculate the derivative in relation to time of the degree of funding of pension
liability. By means of equations (2) and (3), this derivative can be expressed as
in the following

Ḋc(t) =
1

(LT (t))2
[
(F (t)r(t) + C(t)− P (t))LT (t)

− F (t)(LT (t)rL(t) + C(t)− P (t))
]

=
1

(LT (t))2
[
F (t)LT (t)(r(t)− rL(t)) + (C(t)− P (t))(LT (t)− F (t))

]
and hence

Ḋc(t) = 0
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if and only if

C(t)− P (t) = −F (t)LT (t)(r(t)− rL(t))
LT (t)− F (t)

. (23)

Through algebraic calculation, expressing contributions C(t) by means of wage
and contribution rate, namely C(t) = α(t)W (t), and pensions P (t) by means of
the formula (4), and using (8), we can obtain (22). �

Remark 3 Let us assume that the necessary and sufficient condition (22) holds.
Substituting (23) into the time derivative of F (t), expressed in (2), it follows
that

Ḟ (t) = F (t)r(t)− LT (t)F (t)(r(t)− rL(t))
LT (t)− F (t)

,

and then

Ḟ (t) =
F (t)

LT (t)− F (t)
(LT (t)rL(t)− F (t)r(t)).

Dividing, therefore, both sides of the previous equation by F (t), taking into
account the time derivative of LUN(t), see formula (7), and the expression (6),
it follows that

for each time t ∈ [t∗, tf ] Ḋc(t) = 0
if and only if

for each time t ∈ [t∗, tf ]
Ḟ (t)
F (t)

=
L̇UN(t)
LUN(t)

. (24)

By means of (21) in Remark 2, for each time t ∈ [t∗, tf ] it follows that Ḋc(t) = 0
if and only if

for each time t ∈ [t∗, tf ]
Ḟ (t)
F (t)

=
β̇(t)
β(t)

+
Ẇ (t)
W (t)

. (25)

Proposition 4 Let us assume that 0 < F (t∗) < LT (t∗). For each time t ∈
[t∗, tf ], let us assume:

rL(t) = r(t)
F (t)
LT (t)

+
Ẇ (t)
W (t)

LT (t)− F (t)
LT (t)

(hypothesis A)

α(t) =
LT (t∗)
W (t∗)

1
γ(t)ν(t)

− F (t∗)
W (t∗)

(
r(t)− Ẇ (t)

W (t)

)
(hypothesis B)

then for each time t ∈ [t∗, tf ] we obtain β(t) = β(t∗) and Dc(t) = Dc(t∗).

Proof. Let us assume that hypothesis A is true. By means of Proposition 2, for
each time t ∈ [t∗, tf ] it follows that β̇(t) = 0 if and only if hypothesis A holds.
Then for each time t ∈ [t∗, tf ] we have β(t) = β(t∗).
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Let us consider the difference r(t)−rL(t). By replacing in the latter difference
the expression of rL(t) derived from hypothesis A, it follows that

r(t)− rL(t) = r(t)
(

LT (t)− F (t)
LT (t)

)
− Ẇ (t)

W (t)

(
LT (t)− F (t)

LT (t)

)
=
(

LT (t)− F (t)
LT (t)

)(
r(t)− Ẇ (t)

W (t)

)
.

Multiplying both sides of the previous equality by
F (t)

LT (t)− F (t)
, taking into

account formula (6), i.e. LUN(t) = LT (t)− F (t), we obtain

F (t)
LUN(t)

(r(t)− rL(t)) =
F (t)
LT (t)

(
r(t)− Ẇ (t)

W (t)

)
. (26)

Proposition 3 establishes that for each time t ∈ [t∗, tf ] we obtain Ḋc(t) = 0 if
and only if (22), that is

α(t) =
LT (t)
W (t)

[
1

γ(t)ν(t)
− F (t)

LUN(t)
(r(t)− rL(t))

]
.

By (26), we obtain

α(t) =
LT (t)
W (t)

[
1

γ(t)ν(t)
− F (t)

LT (t)

(
r(t)− Ẇ (t)

W (t)

)]

=
LT (t)
W (t)

1
γ(t)ν(t)

− F (t)
W (t)

(
r(t)− Ẇ (t)

W (t)

)
. (27)

From hypothesis A it follows that β̇(t) = 0 for each time t ∈ [t∗, tf ], and by
means of Remark 3, it follows that for each time t ∈ [t∗, tf ]

Ḟ (t)
F (t)

=
Ẇ (t)
W (t)

,

and by means of Remark 2 it also follows that for each time t ∈ [t∗, tf ]

L̇UN(t)
LUN(t)

=
Ẇ (t)
W (t)

.

Integrating the latter two relationships between t∗ and t, with t ∈ [t∗, tf ], we
obtain respectively that for each time t ∈ [t∗, tf ]

F (t)
W (t)

=
F (t∗)
W (t∗)

(28)

LUN(t)
W (t)

=
LUN(t∗)
W (t∗)

.

Therefore it follows that for each time t ∈ [t∗, tf ]
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LT (t)
W (t)

=
LT (t∗)
W (t∗)

. (29)

Consequently, by substituting the expressions (28) and (29) into the expression
(27) of contribution rate α(t), the following is obtained:

α(t) =
LT (t∗)
W (t∗)

1
γ(t)ν(t)

− F (t∗)
W (t∗)

(
r(t)− Ẇ (t)

W (t)

)
. (30)

�

5 Conclusions
In this paper we have proposed a new logical and mathematical model to manage
a defined contribution pension system with a structural funded component.
Within such a context a very general condition for the logical sustainability of a
pension system is given. This is obtained by the model evolution being driven by
differential equations. Furthermore a sufficient condition for easier application is
provided. This is founded on a logical sustainability control indicator, defined as
the LSI, in which other two sustainability indicators work: one manages the pay-
as-you-go component of the pension system and the other manages the funded
component. This LSI is compared to the Swedish Balance Ratio. Conditions
useful for pension system “stabilization” are also provided.

It should be noted that the steady state hypothesis is not used in this paper.
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